It is just a machine that learns
on the role of computing and task automation in cultural and historical research

Kristoffer L Nielbo
knielbo@sdu.dk
knielbo.github.io

Dept. of History & SDU eScience Center, University of Southern Denmark
© Thinking Machine: Interdisciplinary Perspectives on Neural Networks
Aarhus Institute of Advanced Studies, Aarhus University

August 23, 2018
PROGRAM

a singularity? ML in cultural and historical research from endpoint to auxiliary summary

framing the AI debate concepts, trends and challenges examples
a singularity?
Facebook’s AI accidentally created its own language

‘Terminator’ Come To Life? – Facebook Shuts Down Artificial Intelligence After It Developed Its Own Language

Facebook AI Invents Language That Humans Can't Understand: System Shut Down Before It Evolves Into Skynet

30 July 2017, 9:45 pm EDT By Aaron Mamii Tech Times
I'd like the books and the hats
I will take the books and hats
I really need the books and at least one other object
Ok, you can have one book and one ball
If I can have all the books, I can leave you the rest
Deal

You can have the ball if I can have everything else
No can't do that the ball is not going to give me anything
I need the hats and you can have the rest
Deal
Great! Thank you!
i can i i everything else
balls have zero to me to you i everything else
balls have a ball to me
i i can i i i everything else
balls have a ball to me
i .
balls have zero to me to you i i i i i everything else
balls have 0 to me to you i i i i i i everything else
balls have zero to me to me
compromise0: \(l_{\text{PRON}} \text{ will}_{\text{AUX}} \text{ take}_{\text{VERB}} \text{ the}_{\text{DET}} \text{ books}_{\text{NOUN}} \text{ and}_{\text{CONJ}} \text{ hats}_{\text{NOUN}} \)

compromise1: You\(_{\text{PRON}} \text{ can}_{\text{AUX}} \text{ have}_{\text{VERB}} \text{ the}_{\text{DET}} \text{ ball}_{\text{NOUN}} \text{ if}_{\text{SCONJ}} l_{\text{PRON}} \text{ can}_{\text{AUX}} \text{ have}_{\text{VERB}} \text{ everything}_{\text{NOUN}} \text{ else}_{\text{ADJ}} \)

stubborn: \(l_{\text{PRON}} \text{ get}_{\text{VERB}} \text{ all}_{\text{DET}} \text{ the}_{\text{DET}} \text{ balls}_{\text{NOUN}} \text{ ?}_{\text{PUNCT}} \)

singularity: \(\text{balls}_{\text{NOUN}} \text{ have}_{\text{VERB}} \text{ zero}_{\text{ADJ}} \text{ to}_{\text{ADP}} \text{ me}_{\text{PRON}} \text{ to}_{\text{PART}} \)

<table>
<thead>
<tr>
<th></th>
<th>compromise0</th>
<th>compromise1</th>
<th>stubborn</th>
<th>singularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H(X))</td>
<td>2.53 (1.16)</td>
<td>2.3 (1.35)</td>
<td>2.59 (0.84)</td>
<td>1.62 (0.51)</td>
</tr>
<tr>
<td>(TTR)</td>
<td>0.92 (0.09)</td>
<td>0.94 (0.07)</td>
<td>0.96 (0.09)</td>
<td>0.5 (0.27)</td>
</tr>
</tbody>
</table>
ML in cultural and historical research
Just a machine that learns

Machine learning emerged from AI - **build a computer system that automatically improves with experience**
- application is too complex for a manually designed algorithm
- application needs to customize its operational environment after it is fielded

A well-posed learning problem
A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E

Historically, ML is “just” part of the industrial age’s efforts towards perfecting task automation
Humanities - Cultural and Historical Data

Domain knowledge in history, language, literature &c combined with microscopic and (predominantly) qualitative analysis of human cultural manifestations

- research that solely relies on very few data points, a “myopic” perspective and human computation
Humanities research meets machine learning

As a consequence of the data surge, we are (also) “jumping the automation bandwagon”

– plus theoretical innovations that rely on ML/DL (e.g., lexical \rightarrow compositional semantics)

Inherent challenges in our data and users

– data are unstructured, heterogeneous, need normalization, low resource varieties
– users lack of computational literacy, $++$ gab between technology and domain knowledge

Types of problems solved by ML:

– initially ML was the solution to a(-ny) research problem
– increasingly, ML solves auxiliary tasks related to automation
from endpoint to auxiliary
Religion | Computer simulation & action understanding

Figure: Schematic of Elman network used for simulating \(n \)-step prediction tasks.

Scholars of religion and anthropology have been studying perceptual and memory effects of symbolic behaviors

– we used RNNs to simulate perceptual and encoding of various actions

Behavior of artificial neural networks served as a model of and for human behavior

Philosophy | Latent Semantic & Dating of Texts

- philosophers and sinologists have been debating the existence of mind-body dualism in classical Chinese philosophy
- with domain experts, latent semantic models was used to identify a hierarchical dualistic semantic space
- one model was further utilized to predict class of origin for controversial texts slices
- ML solved a research problem directly

– Combine fractal theory and affective computing to automate assessment of text quality
– solve more “proper” humanities problems that relate to only a few data points (e.g., a single novel)
– utilize language technology (tagging, sentiment analysis) that relies heavily on machine learning

– historians and linguists debate change points in the structure of Saxo’s *Gesta Danorum*

– compare lexical and compositional changes in the structure an important historical document

– co-opt ML for normalizing and parsing historical Danish plus building document representations

Summary

The dangers of AI are highly perspective-dependent.

In cultural and historical research, data availability and theoretical developments have made ML an important ally.

ML has become more of an auxiliary partner than a goal in itself.

- Value lies in automation of tedious & often humanly intractable research tasks.
- There are some very real challenges related to ML for our research domains.
THANK YOU

knielbo@sdu.dk
knielbo.github.io

& credits to
Edward Slingerland, Department of Asian Studies, University of British Columbia, CAN
Jianbo Gao and Bin Liu, Institute of Complexity Science and Big Data, Guangxi University, CHN
Culture Analytics @ Institute of Pure and Applied Mathematics, UCLA, US