Some Thoughts on Computational Narratology
Dynamic Evolution and Compositional Change in Literature

Kristoffer L Nielbo
knielbo@sdu.dk
knielbo.github.io

Dept. of History & SDU eScience Center
University of Southern Denmark
Some Thoughts on Computational Narratology

Kristoffer L Nielbo
knielbo@sdu.dk
knielbo.github.io

Automated micro-analysis
DH Revisited
Narrative

Narrative Coherence
Dynamic evolution of sentiment
Story arc
Hurst estimation
Global coherence
Local coherence
Proposal
Towards scalability

Narrative Change
Compositional change detection
Lexical change detection
Topical distances
Model dynamics
Learning to walk before we run

“In humanities research, the use of data analytics and high performance computing is advanced under the banners of ‘distant reading’ and ‘macroanalysis’. These technologies are supposed to give us entirely new insights that have previously been unobtainable. The results however often resembles technical demonstrations rather than solutions to research problems. In order to really benefit from analytics and HPC, we first need to *operationalize* and *automate* microanalysis.”
- A *narrative* is a sequence of intentionally dependent events (‘objects bounded in time’) directed at some goal-state

- [example] An action (perception of) has a narrative structure, the success of which depends on the (causal) coherence between the sub-actions and intended goal

**Figure 1: Partonomy of ‘drinking beer’**

Capture a narrative’s evolution (perception of) by focusing on the *coherence* of affective dynamics and co-occurrence structure of one text
Data

- Kazuo Ishiguro’s Nobel-prize winning *Never Let Me Go* (2005) which is driven by a “great emotional force”
- Sentence-level sentiment estimation based on the *Syuzhet* lexicon

Problem

- Psychological/affective experience of a narrative
- Aesthetics optimality for literary fiction

---

Some Thoughts on Computational Narratology

Kristoffer L Nielbo
knielbo@sdu.dk
knielbo.github.io

Automated micro-analysis
DH Revisited
Narrative
Narrative Coherence
Dynamic evolution of sentiment
Story arc
Hurst estimation
Global coherence
Local coherence
Proposal
Towards scalability
Narrative Change
Compositional change detection
Lexical change detection
Topical distances
Model dynamics

Figure 2: Sentiment time series of Never Let Me Go
Some Thoughts on Computational Narratology

Kristoffer L Nielbo
knielbo@sdu.dk
knielbo.github.io

Automated micro-analysis
DH Revisited
Narrative
Narrative Coherence
Dynamic evolution of sentiment
Story arc
Hurst estimation
Global coherence
Local coherence
Proposal
Towards scalability
Narrative Change
Compositional change detection
Lexical change detection
Topical distances
Model dynamics

Figure 3: Computation of local fluctuations around linear, quadratic, and cubic trends

Figure 4: Estimation of Hurst parameter
Some Thoughts on Computational Narratology

Kristoffer L Nielbo
knielbo@sdu.dk
knielbo.github.io

Automated micro-analysis
DH Revisited
Narrative
Narrative Coherence
Dynamic evolution of sentiment
Story arc
Hurst estimation
Global coherence
Local coherence
Proposal
Towards scalability
Narrative Change
Compositional change detection
Lexical change detection
Topical distances
Model dynamics

Figure 5: The Hurst parameters of original and normalization sentiment time series of *Never Let Me Go*
local coherence

Figure 6: The evolution of Hurst under 256 window size of original and normalized sentiment time series
The (global) Hurst exponent of a novel's sentiment story arc provides an index of a novel's narrative coherence. This index can be used as an evaluation metric of how the novel’s moods, feelings and attitudes will be perceived by a reader.

As an evaluation metric, the Hurst exponent of a novel can be interpreted accordingly: $0.5 < H < 1$ indicates a coherent narrative; $H = 0.5$ indicates a narrative that is incoherent, almost random; and $H < 0.5$ indicates a overly rigid and potentially bland narrative.

The optimal narrative manages the reader’s motivation by neither being completely coherent ($H \approx 1$) nor incoherent ($H = 0.5$), but somewhere in between.

For $H > 0.5$, the (local) time-varying Hurst exponents reflects variation in the novel’s plot, such that local minima reflect disruptions or points of narrative change, positive incline reflect continuous (persistent) narrative development, and decline a movement towards disruptions.
Some Thoughts on Computational Narratology

Kristoffer L Nielbo
knielbo@sdu.dk
knielbo.github.io

Automated micro-analysis
DH Revisited
Narrative
Narrative Coherence
Dynamic evolution of sentiment
Story arc
Hurst estimation
Global coherence
Local coherence
Proposal
Towards scalability

Figure 7: global H for Danish textual cultural heritage
**Data**

- Saxo Grammatricus (c. 1160 - post 1208) represents the beginning of the modern day historian in Scandinavia
- *Gesta Danorum* ("Deeds of the Danes") is the single most important written source to Danish history in the 12th century

**Problem**

- bipartite composition of *Gesta Danorum*
- is the transition between the old mythical and new historical part located in book eight, nine, or ten
- is this transition gradual (continuous) or sudden (point-like)
- qualitative observations and contextual knowledge to argue for a particular change in content and composition

---

Figure 8: Most frequent keywords and entities in *Gesta Danorum* in windows of 50 sentences
Figure 9: Cosine distance matrix for vector space model and relative entropy between documents in seeded topic model of Saxo
Some Thoughts on Computational Narratology

Kristoffer L Nielbo
knielbo@sdu.dk
knielbo.github.io

Automated micro-analysis
DH Revisited
Narrative
Narrative Coherence
Dynamic evolution of sentiment
Story arc
Hurst estimation
Global coherence
Local coherence
Proposal
Towards scalability
Narrative Change
Compositional change detection
Lexical change detection
Topical distances
Model dynamics

Figure 10: Model dynamics
summary

- *Gradual* transition that starts in the latter part of *book eight* and ends in book ten
- greatest rate of change in book nine, which explains the point-like position
- using co-occurrence structure of a document show superior results in comparison to classical VS model
THANK YOU

knielbo@sdu.dk
knielbo.github.io


& credits to
Qiyue Hu, Bin Liu & Jianbo Gao, Institute of Complexity Science and Big Data, Guangxi University, CHN
Mads Rosendahl Thomsen, Institute for Comparative Literature, Aarhus University, DK
Ditte Laursen, Royal Danish Library, DK

& funding
Danish Agency for Science and Innovation: Calculus of Culture
Andrew Mellon Foundation: Mapping Literary Influences