Planning a shared stack and data repository
NeIC.NDHL Workshop 1

Kristoffer L Nielbo
kln@cas.dk
knielbo.github.io

Center for Humanities Computing|chcaa.io
Aarhus University, Denmark
Outline

1 Introduction

2 National State of the Art

3 NDHL Wishlist
the data deluge is transforming knowledge discovery and understanding in every domain of human inquiry

a large part of these data are soft and unstructured ⇒ to get value from these data, humanities (and social sciences) must utilize automation

access to (high quality) data has become the biggest obstacle ⇒ NDHL will provide a shared software and application layer for modeling and analysis of cultural heritage* data across the Nordics.
Planning a shared stack and data repository

Kristoffer L Nielbo
kln@cas.dk
knielbo.github.io

Introduction

National State of the Art

NDHL Wishlist

Collaborators
- DeIC, Danish eInfrastructure Cooperation (HPC & RDM)
- Royal Danish Library
- DigHumLab
- CLARIN.DK & DARIAH-DK

Center for Humanities Computing Aarhus
Current situation

Motivation
- Massive* national investments in supercomputing and “interactive HPC” is seen as the solution for onboarding SSH.
- Researchers are interested in newspapers, literature, and social media at scale

Challenges
- Increase in research-related cases of copyright infringement
- Currently “data mining” is a no go for cultural heritage data, unless a project has an agreement with the owner (case-by-case)

Options
- Access within the walls of the Royal Danish Library on the Cultural Heritage Cluster
- Derived data can be shared (e.g., summary statistics, neural embedding)
- Several projects are working on local solutions

We need an efficient solution for running applications on cultural data
Software and application layer

Tools For CHCAA Python is the *lingua franca* and we rely heavily on the NumPy-SciPy ecosystem combined with TensorFlow with a CUDA backend; Numba switching to Dask.

Hardware Currently 40 active projects, 1/4 larger projects rely on accelerated HPC. A larger project uses 500-1000 node*hours on GPU nodes (2*v100) or (thin) CPU nodes (2*Intel CPUs w. 12 cores and 64 GB RAM).
Restricted national data resources

<table>
<thead>
<tr>
<th>DATA SET</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspapers</td>
<td>KB</td>
</tr>
<tr>
<td>Internet</td>
<td>KB</td>
</tr>
<tr>
<td>Radio</td>
<td>KB</td>
</tr>
<tr>
<td>Literature (contemporary)</td>
<td>KB</td>
</tr>
<tr>
<td>TV</td>
<td>KB</td>
</tr>
<tr>
<td>FB</td>
<td>DataLab</td>
</tr>
<tr>
<td>Event-based Twitter</td>
<td>DataLab</td>
</tr>
<tr>
<td>Literature (pre 1920)</td>
<td>ADL</td>
</tr>
<tr>
<td>CoREST data</td>
<td>DSL</td>
</tr>
<tr>
<td>SMK collection</td>
<td>SMK</td>
</tr>
</tbody>
</table>
Resource sharing in the Nordics
“create new ways to enable compute- and data-intensive research by implementing a common data, software and service stack at royal libraries and HPC centres across the Nordics, and ensure joint access to restricted and copyrighted cultural heritage data”

- Pan-Nordic access to raw data for modeling and analysis
- ... and meta data for efficient identification, access and evaluation of data with a FAIR mindset
- Easy sharing of compute resources
- Shared software and application stack to avoid parallel development
- Continued collaboration around data intensive research in the (digital) humanities
Model 1: Shared Virtual Laboratory

“Inspired by NLPL, develop a DMZ that enables safe explorations of cultural heritage collections (restricted or otherwise) for research prototyping, piloting, and competency development.”
Model 2: Container Sharing

“tit for tat container sharing that gives access to restricted data through a research ring across the Nordics.”
THANKS

kln@au.dk
knielbo.github.io
chcaa.io